]

Vol. 1i No. 11 PROGRESS IN NATURAL SC'ENCE November 2001

RESEARCH NOTES

Approximation on computing partial sum of nonlinear
differential eigenvalue problems*

SUN Jiachang (#h 4 )'** and JIANG Murong (EFE% )" 2
1. Institute of Software, Chinese Academy of Sciences, Beijing 100080, China;

2. Department of Mathematics, Yunnan University, Kunming 650091, China

Received January 9, 2001; Revised February 27, 2001

Abstract In computing the electronic structure and energy band in a system of multi-particles, quite a large
number of problems are referred to the acquisition of obtaining the partial sum of densities and energies using the “first
principle” . In the conventional methed, the so-called self-consistency approach is limited to a small scale because of
high computing complexity. In this paper, the problem of computing the partial sum for a class of nonlinear differential
eigenvalue equations is changed into the constrained functional minimization. By space decomposition and perturbation
method, a secondary approximating formula for the minimal is provided. It is shown that this formula is more precise and
its quantity of computation can be reduced significantly.
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Nonlinear differential eigenvalue problems are the basic ones in calculating the energy functions
for multi-particles in physics, chemistry and materials science. There are two ways to carry out the
approximate computations: one is to choose appropriate basic functions and the other is to improve ef-
fective potential functions. As the physical wave function near the atomic nucleus varies very fast with
space coordinates, these algorithms would reach convergence slowly, or lead to big errors or lower
precision . Especially in computing electronic structure and energy band in a system of multi-particles,
a number of problems are to get the partial sum of the densities and energies using the “first princi-
ple” . The ordinary so-called self-consistency approach needs to calculate all or most of the eigenval-
ues and eigenfunctions. As the atoms increase in number, the computation becomes more complicated
and troublesome . In 1996, Sun''! proposed a block eliminating iteration method for solving higher-or-
der generalized eigen-problems using the self-consistency approach and parallel block Jacobi method,
and considered a couple of complex conjugate symmetric matrixes with 1572 orders in nonlinear optical
crystal electronic structure problems. In 1997, Bai' discussed the computing of partial eigenvalue
sum for linear problems. In this paper, we change the problem of computing the partial sum for a
class of nonlinear differential eigenvalue equations into one of the constrained functional minimization .

By space decomposition and perturbation method, a secondary approximating formula for the minimal
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is provided. The numerical experiments show that this formula is more precise and its quantity of com-
putation can drop significantly .
The nonlinear differential eigenvalue problem for describing the motion of multi-particles in a

bounded domain is given as

{Luk+ V(x)u, + ef(pluy = Ay, k=1,2,+,q, 1)
uy |3() =0,

where L is a quadratic linear bounded operator satisfying ( Lu, v) = (v, Lu); u, the real-value

eigenfunction corresponding to the eigenvalue A,; p = 2/ u} the density function; (u,, u;) = 6y,

k, j=1,2,-,q. 1f(p)l<Clpl",0<r<2; C and r are constants; V(x) is a given potential

function; ¢ a parameter; (1 a bounded domain in R".

By the theory of differential equation, we know that there exists a weak solution u, € H(l)( 2), k
=1,2,"+,q such that # = (u,, -, uq)e (H(l)(ﬂ))q = Hy(Q) x - x H(l)(-Q)-

1 Ordinary algorithm

In dealing with electron states and relational physical properties for a system composed of a large
amount of particles, most computing methods based on Kohn-Sham scheme, such as pseudopotential,
linearized muffin-tin orbital method and linearized augmented-plane-wave method, have the following

solving procedures.

(i) Choose a group of basic functions ¢,, r=1,"*, N, N> ¢ to find an initial function u(,), =
N

z cp$, with (ul, ul) =0,,(k,j=1,2,"*,¢), and to obtain the initial density function value p,

r=1

= i}(u(}c(x))z;

(ii) solve the iterated equations Luf + V(x)up + ef (o™ " ul = Aful to get u;, , A (k=

1,2, ,¢), and p" = 2, (uf(x))%;
k=1

(iii) if || p™ = p™ ' || is less than the number given first, then stop; otherwise replace the ini-

tial density function, iterate again;

9
(iv) sort A, from small to large, count the sum of ¢ eigenvalues iz, = Z Ay
k=1

Usually, the number of atoms N is 10 ~ 100 times of ¢ . If N is 100, the order of matrix needed
to be computed will be 10* ~ 10°, and if N is 1000, the matrix order will reach 10000 ~ 100000.

The computing process becomes more and more complicated and difficult.

2 Approximating formula

Define a functional®

1) Sun, J.C. Density functional approach for computing partial eigenvalue sum instead of self-consistency approach. 1999 RD-
CPS Annual Reporis, 1 ~4.
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I(u) = E(Luk + V(x)u, up) + ¢ Jnf(p)pdﬂ, (2)

where u = (u;, uy, =, uq), ukGH(l)(Q),(u,,,uj)=8kj, (k,j=1,2,,q9), p = Eui
k=1

As I(u) is the expected value of total energy for a given ¢ particle system, we call I(u) the

energy functional .

From (2), it is easy to know that the functional I(u) € (H(l,(ﬂ))q is (i) well defined; (ii)

lower semibounded; (iii) coercive; (iv) lower semicontinued. By Theory 1.2 in Ref. [2], the
[3]

functional I(u) can attain its infimum in ( Hy(£2))?. Tt is not difficult to prove that'*’ this mini-
mization is a weak solution of problem (1).
In order to get partial eigenvalue sum for problem (1), one needs to compute
ty = min/(u). (3)

If e =0, problem (1) becomes g independent linear equations Lu = Lu + V(x)u = Au, each of
which is solvable and has a unique minimum. They may form an orthogonal matrix. By orthogonal
transformation, we can change this orthogonal matrix into a diagonal matrix, then take the diagonal

functions as the initial values, then use the perturbation method to approximate (3).
For simplicity, we denote the diagonal functions by u,e, k=1,2,*,q.
When € 0, we decompose Hy({2) into H)(2) = H(l)q(())@(H(l)q(.Q))J‘ , where
Hp, = Span{u | Luyy = Aposor (o5 wo) = 8ys ks j = 1,,4}.
Then, for u, € H)(2), one has
W = pulio + €8> o € Ho (2),  uy € (Ho(2))1. (4)
If u,(k=1,2,---,q) is a solution of problem (1), by the orthogonality of u,, one obtains

0, k=7,
ezgkgj(uhl’ ujl) = { (5)
I - P%c’ k=j.
if g0, then p} + (eg;)? = 1. Substituting (4) into (2), with (5), we have

I(lt) =I(u0)

((fQoo) + po f ' (00)) usos us) kr

9
2 (Lugys wyy) = (Luggs ) -
te kz:;[ . H ¥ #0 ] &k ¥ (Lukl’ ulcl) - (LukO’ uko)

q ' 2
g Wl et oo
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9

Lo = Zq(”ko)z’ I(u,) = E[(ZukO’ ugo) + €(f(po) ures uzo) ] (7)

k=1

If (Luyy, ugy) — (Lugg, ugo) <0, let g, = 0; otherwise

N ((f(_Po) + Pof'(Pg))uko, ukl) (8)
8k =~ (Lukl’ ukl) - (Luy, ukO) Pi-

Then I(u) = I(uo) - Ezzq:[(iukly ukl) - (Zukoy uko)] gi + 0(53 g%c)

k=1

Now, problem (3) has changed into a problem of how to select u;; and g, such that
(i) g3 <1;

(i) wy = [ (Lugy, upy) - (Lugg, )] g7 is maximum to satisfy

p, = minl(u) = I(uo)—ezzq)wk. (9)
K1
In order to select u;,, we also set
Ay = Ay + € A4, (10)
Substitute (4) and (10) into (1), and equate coefficients of the same power of € to get

Lugo = Awolos  Upo lag = 0, (11)
Lug - Ayt = - &f(PO)ukO + &Akluko’ ug lag = 0. (12)
8k 8k

As (11) is solvable and its solution yields the eigenfunctions $,, corresponding to the eigenvalues
Yin> n=1,2,++, and 7}, #« 7}, I m s n, the eigenfunctions {$.,] form an orthonormal set so that
($1ns Pin) = Oum. To solve (12), we expand uy, in terms of the orthonormal set {9, 1 :

Uy = Zakm¢km' (13)

mz1

Thus u,, satisfies u,;; 1,9 = 0 because $,,, 1,5 =0 for each m. Letting u,, = 9, and A,y = ¥,,, and
substituting (13) into (12), by the orthonormality condition, we have

1 ij
- = (00) $1,0:,d02, m n,
_ Yim = YVin 8k nf P07 Pints *

0, m=n,

A = Jn Fo0) #2402,

Theorem. Under the secondary approximation, the partial eigenvalue sum to problem (1) is
determined by
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K, = minf(u) = I(u,) - ezzq}[(iuko, uro) = (Luyys uyy)1gs, (14)

where u,,€ H, (2), uy, € (H(l]q(.Q))L,pi +(eg,)?=1, e*g% <1, u, and g, are determined
by (8) and (13).

3 Numerical experiments

Here, we consider a system of multi-particles in the inifinitely deep potential well. Let
L=-A, V(x)=0, f(p) = p, then problem (1) can be written as

q
- Au; + ezu?uk = Ay, k=1,2,-+,q,

=
uy lag = 0.

In one dimension: set 2 = [0,1], u;y=+2sinknx, then

- glg+1)(2¢g + 1)

Hq 6

e2 [ q 1 N 1
IS S ned o)

2 2
j=1, =k J m=g+t T — k

Prealas )
7‘l"+€qq+2

Table 1 shows a comparison between p_q and i, obtained by the ordinary method.

Table 1 Comparison between z, and 7,

g 2 iy
2 54.3247790 54.3326175

5 570.3016974 570.3153740
10 3904 .7707760 3904 .7883036

We computed the density function p corresponding to 7, as shown in Figure 1.

In two dimensions: set 2 =[0,1]x [0,1], u,, = sinkmrrxsinjnry, then

b

[ @ (®)
oL 12}
a 1t

st
10t
4t ol
T o2 04 0.6 0.8 \ 1.0 02 0.4 0.6 0.3 7.0
X X

Fig. 1 Density function for ¢ =5 (a) and ¢ =10 (b).
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o oglg+ Qg+ ) Eq( 5)
Uy = 6 T (m + n ) + 4 q + 4
% 2 [ . 1 . 1
_ NS N |
256(m? + nz)ﬂzg ]:f._j;ka -k rZw I %

This formula can deal with the energy sum in different bands for the multi-particles on a rectangle.
Fig. 2 shows the density function for single pariicle at ground state. Table 2 gives the values of ﬁe for
m,n=1or2.

Fig. 2 Density function for single particle at ground state.

Table 2 Values of ;}q in a rectangular domain

m,n g=2 g=35 qg=10
m=1,n=1 100.32068 1093 .46857 7627.71997
m=1,n=2 348.68565 3815.42211 26654 .83327
m=2,n=2 993.45969 10887.81399 76108 .45303
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